Proactive scheduling in distributed computing - A reinforcement learning approach
نویسندگان
چکیده
In distributed computing such as grid computing, online users submit their tasks anytime and anywhere to dynamic resources. Task arrival and execution processes are stochastic. How to adapt to the consequent uncertainties, as well as scheduling overhead and response time, are the main concern in dynamic scheduling. Based on the decision theory, scheduling is formulated as a Markov decision process (MDP). To address this problem, an approach from machine learning is used to learn task arrival and execution patterns online. The proposed algorithm can automatically acquire such knowledge without any aforehand modeling, and proactively allocate tasks on account of the forthcoming tasks and their execution dynamics. Under comparisonwith four classic algorithms such asMin–Min,Min–Max, Suffrage, and ECT, the proposed algorithmhasmuch less scheduling overhead. The experiments over both synthetic and practical environments reveal that the proposed algorithm outperforms other algorithms in terms of the average response time. The smaller variance of average response time further validates the robustness of our algorithm. © 2014 Elsevier Inc. All rights reserved.
منابع مشابه
Multicast Routing in Wireless Sensor Networks: A Distributed Reinforcement Learning Approach
Wireless Sensor Networks (WSNs) are consist of independent distributed sensors with storing, processing, sensing and communication capabilities to monitor physical or environmental conditions. There are number of challenges in WSNs because of limitation of battery power, communications, computation and storage space. In the recent years, computational intelligence approaches such as evolutionar...
متن کاملOperation Scheduling of MGs Based on Deep Reinforcement Learning Algorithm
: In this paper, the operation scheduling of Microgrids (MGs), including Distributed Energy Resources (DERs) and Energy Storage Systems (ESSs), is proposed using a Deep Reinforcement Learning (DRL) based approach. Due to the dynamic characteristic of the problem, it firstly is formulated as a Markov Decision Process (MDP). Next, Deep Deterministic Policy Gradient (DDPG) algorithm is presented t...
متن کاملA novel multi-agent reinforcement learning approach for job scheduling in Grid computing
Grid computing utilizes distributed heterogeneous resources to support large-scale or complicated computing tasks, and an appropriate resource scheduling algorithm is fundamentally important for the success of Grid applications. Due to the complex and dynamic properties of Grid environments, traditional model-basedmethodsmay result in poor scheduling performance in practice. Scalability and ada...
متن کاملAn Effective Task Scheduling Framework for Cloud Computing using NSGA-II
Cloud computing is a model for convenient on-demand user’s access to changeable and configurable computing resources such as networks, servers, storage, applications, and services with minimal management of resources and service provider interaction. Task scheduling is regarded as a fundamental issue in cloud computing which aims at distributing the load on the different resources of a distribu...
متن کاملOptimization Task Scheduling Algorithm in Cloud Computing
Since software systems play an important role in applications more than ever, the security has become one of the most important indicators of softwares.Cloud computing refers to services that run in a distributed network and are accessible through common internet protocols. Presenting a proper scheduling method can lead to efficiency of resources by decreasing response time and costs. This rese...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Parallel Distrib. Comput.
دوره 74 شماره
صفحات -
تاریخ انتشار 2014